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Phase transition of the one-dimensional coagulation-production process

Géeza Qdor
Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49, Hungary
(Received 22 December 2000; published 23 May 2001

Recently an exact solution has been found by M. Henkel and H. Hinridds&tys. A34, 1561(2001)] for
the one-dimensional coagulation-production process~>2\, AOA— 3A with equal diffusion and coagula-
tion rates. This model evolves into the inactive phase independently of the production rate ¥ithensity
decay law. This paper shows that cluster mean-field approximations and Monte Carlo simulations predict a
continuous phase transition for higher diffusion/coagulation rates as considered by the exact solution. Numeri-
cal evidence is given that the phase transition universality agrees with that of the annihilation-fission model
with low diffusions.
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One-dimensional, nonequilibrium phase transitions haveemoval requires at least two particles to meet. In this paper
been found to belong to a few universality classes, the moshe following one-dimensional coagulation-production pro-
robust of them is the directed percolatidbP) class[1,2].  cesses will be investigated.

According to the hypothesis of Ref§3,4] all continuous (a) Spatially symmetric coagulation-production processes:
phase transitions to a single absorbing state in homogeneous

systems with short ranged interactions belong to this class f

provided there is no additional symmetry and quenched ran- ADA—3A, @
domness present.

Recent studies on the annihilation fissioiF) process c/2 c/2
2A—0, 2A—3A [5-8 found evidence that there is a 2A—A0, 2A—0A, 2
phase transition in this model that does not belong to any
known universality classes. This model without the A®<i(Z)A. 3)
diffusion—the so called pair contact process where pairs of
pgrt_icles can annihilate or cregte new pa_irs—was introduced (b) Spatially asymmetric coagulation-production pro-
originally by Jensei9] and while the static exponents were .agges:
found to belong to DP class the spreading ones show non-
universal behavior. By adding single particle diffusipl t2 t2
Carlonet al. introduced the pair contact process with diffu- AAD—3A, OAA—3A, (4
sion (PCPD particle model. The renormalization group
analysis of the corresponding bosonic field theory was given o2 o2
by Ref. [5]. This study p_redlctgd a nqn-DP clags trans!t!on, 2A—AD, 2A—0A, ()
but it could not tell to which universality class this transition
really belongs. An explanation based on symmetry argu- d
ments is still missing but numerical simulations suggest AO— QA. (6)
[10,8] that the behavior of this system can be well described
(at least for strong diffusionby coupled subsystems: single Both versions fulfill conditiongi)—(iii. ) but Henkel and Hin-
particles performing annihilating random walk coupled torichsen[13] show that ford=c the symmetric version al-
pairs (B) following DP processB—2B, B—®. The sys- ways evolve into the inactive state wiphxt~%° scaling law.
tem has two nonsymmetric absorbing states: one is comFhey argue that the asymmetric version displays a nonequi-
pletely empty, in the other a single particle walks randomly.librium phase transition. The difference is said to be similar
Owing to this fluctuating absorbing state this model does noto the hard-core effects observed in one-dimensional models
oppose the conditions of the DP hypothesis. [14-18,.

The most well known exception from the robust DP class Hard-core particle exclusion effects can really change
is the parity conservingPC) class, where a mod 2 conserva- both the dynami¢14—16 and statid 17,18 behavior of one-
tion of particles can be founfil1] and in multiabsorbing dimensional systems by introducing blockades in the particle
state systems an exaZ, symmetry is satisfied to¢12].  dynamics but in this work | argue that this kind of hard-core
Some exponents of the PCPD model are close to those of thedffects are not responsible for the lack of phase transition.
PC class but the order parameter exponghas been found One can quickly check by simulations that i< c the den-
to be very far away from both of the DP and PC class valuesity in the asymmetric version decays in much the same
[8]. In fact this system does not exhibit eitheZasymmetry  way—with p=t~ %% scaling law—as in case of the symmetric
or a parity conservation that appear in models with PC classersion. Furthermore | shall show that if the coagulation rate
transition. It is conjecturefil3] that this kind of phase tran- is smaller than the diffusion rate particles can escape before
sition appears in models whe(® solitary particles diffuse, removal, an active phase will emerge with a continuous
(if) particle creation requires two particles, afiid) particle  phase transition belonging to the same class that was found
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in the AF model for weak diffusion. Therefore both versions
exhibit qualitatively the same phase diagram.

To prove this first | shall apply cluster mean-field ap-
proximations(GMF) [19,20, which can predict phase dia-
grams qualitatively well. The mean-field equation for the

steady state of both versions is

0="f(1-pa)Pa—CPA, )
wherep, is the probability ofA-s at a given site. Note that
the diffusion rated does not play a role in this approxi-
mation. By introducing the parametrizatioo p(1—d),
f=(1-p)(1—d)—that is similar to that of the PCPD

model—this has the solution,

B _2p—1 g
P—PA—p_—1, (8)
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FIG. 2. Cluster mean-field approximations in the symmetric
coagulation-production model fat=0.2. The curves correspond to
steady state density solutions as the function @f for

simulation results. Inset: Corresponding coherent anomaly ampli-

for p<1/2 andp=0 if p=1/2. Therefore an active state N=2,3,4,5,6,7(right to lef). The circles with error bars represent

appears in the mean-field approximation already.

For higher order cluster mean-field approximations simi-tudes with a power-law fitting.
lar scenario can be found, but one has to treat the two ver-
sions separately. The density in pair approximation for thel his gives the phase boundary in pair approximation that is a
continuous unlike in case of the PCPD mofg] (see Fig.
1). There is an other solution with positive density for
(p—1)p?—2dp(p?+2p—2)+d?(p3+5p2+4p—4) d<p/(p+2) but that is unstable. In the two extreme cases:
5 5 > 3 5 . d=0 andd=1 there is no phase transition. Fd=0 the
(p—1)p“—2dp(p“+2p—2)+d“(p +5p°—4) system evolves to frozen states with isolated particles, while
©  for d=1 there is only random walk of particles with exclu-

gion. The pair density in the pair approximation

symmetric version is

One can easily prove that if the coagulation rate is equal t
((p—1)p—d(p*+3p—2))*(p—1)*

the diffusion rated=p(1—d)/2 this gives a single=0 ab-
sorbing state solution in agreement wjtt8].

The steady state solution with positive density is possible

if

C:
(p—1)p®—2dp(p®+2p—2)+d*(p*+5p?—4)

11

has a leading order singularity all along the phase transition
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FIG. 1. Phase diagram of the symmetric coagulation-production FIG. 3. Local slopes of the density decay in the symmetric co-
model. Dotted line: mean-field approximation, dashed line: pair apagulation production process. Different curves correspond to

proximation, squares: simulation results. The circles stipas the

p=0.1795, 0.1797, 0.1798, 0.1799, 0.18om bottom to top.

function of c. Lines connecting symbols are used to guide eyesThroughout the whole papé¢lis measured in units of Monte Carlo

only.

sweepgMCS).
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TABLE |. Summary of results. 06
d 0.1 0.2 0.4 0.7
055 -
Pe 0.11291) 0.1797%8) 0.264711) 0.35282)
a 0.2639) 0.2688) 0.2758)
B 0.571) 0.581) 0.571) s o5l Em
Bcam 0.573) =

045 -
suggesting one universality class unlike in the case of PCPD

model[6].
The GMF solutions forN=3,4,5,6,7 block sizes have 04 , , , ,
been determined numerically dt=0.2. The approximation 0 0.05 01 KE 015 02 0.2
level is constrained by the numerical stability of the fixed
point solution in the multidimensional space bFblock FIG. 4. Effective order parameter exponent results. Linear ex-

probability variables. As Fig. 2 shows tlpg density curves trapolation results in8=0.571).

of different approximations converge to the simulation re-

sults. the densities were averaged over*1MCS and 1000
Using these data an estimate can be given for the ordesamples. By looking at the effective exponent defined as

parameter density exponept:|p—p.|? using the Coherent

anomaly methodCAM) [21], which has been proven to give Inp(e)—Inp(e_q)
precise estimates for the DR2] and PC[23] classes. Ac- Bertl€) =~ P (15)
cording to CAM the amplitudesa(N) of the cluster mean-
field singularities scale in such a way that one can read offBq— B=0.571), seeFig. 4 which is in
good agreement with the exponent of the AF model for weak
a(N) [ pg(N) —pg|#~Aur (13)  diffusion determined by coherent anomaly method and simu-
lations[8].

the exponent of true singular behavior can be estimated. The simulations and the cluster mean-field approxima-
From the mean-field solutio(8) one read off tha3y,e=1. tions show that if the diffusion rate is lowered this phase
The critical pointp, can be estimated either by extrapolating transition disappears and the system will decay with ghe
on the GMF results or by simulations. Linear extrapolation at<t %% law independently of in both versions. As expected
d=0.2 for p.(1/N—0) gives: p.=0.1842). Monte Carlo the asymmetric version exhibits a phase transition with the
simulations on large systems—discussed below—give @ame universal properties as the symmetric version. For ex-
more precise estimatep,=0.1797%8). The amplitudes ample, for d=0.2 the transition point is atc
a(N) nearp.(N) are determined by linear fitting from the =0.3591), f/2=0.4409(1) with the decay exponent
pn(p) data and shown in the inset of Fig. 2 as the function of=0.271).
pPc(N)—p:.. A power law with exponent B— Bue In conclusion coagulation-production models exhibit a
= —0.43(3) can be fairly well applied for points correspond- phase transition if the diffusion is fast enough. The spatial
ing to N>2 approximations giving an estimate8  symmetry of the production process has been found to be
=0.573), which agrees well with former results for the AF irrelevant as in case of the AF procd$d. The critical be-
model with small diffusion rateE3]. havior agrees well with that of the AF model in its weak
Monte Carlo simulations of the symmetric process startedliffusion rate region. An open question is that why can not
from fully occupied lattices of size =40 000 show a phase one see the cyclically coupled behavior in this model simi-
transition ford=0.2 andp.=0.179 75(10)(see Fig. 3 The larly as in the PCPD model ad—1. The corrections to

local slopes of the density decay, scaling are getting very strong in this limit that make numeri-
cal solutions very confusing, but one has to realize that the

—In[p(t)/p(t/m)] B— ® process of pairgpresent in AF is missing in this

aeri(t) = : (14 model. Therefore aingle universality class in this model

In(m
(m) and two distinct classesn the AF model are likely. This

conjecture is strengthened by the pair mean-field results: one
obtains analytically theamesingular behavior here and/o
distinct singular behaviorin case of the PCPD model along
the phase transition line.

(where we usen=8 usually at the critical point go to ex-
ponenta by a straight line, while in sulsupej-critical cases
they veer dowfup) respectively.

For the critical poin{ p.=0.179 75(8) one can estimate

that the effective exponent tends ée=0.2639), seeTable The author would like to thank Na Menyhad for stimu-
I, which agrees with results for the AF mod#él,8] again.  lating discussions and Malte Henkel and Haye Hinrichsen
For otherd-s similar results have been found. for their comments. Support from Hungarian research fund

In the supercritical region the steady states have been d®TKA (Grant Nos. T-25286 and T-235band from Bolyai
termined for differente=p— p. values. Following level-off (Grant No. BO/00142/99is acknowledged.
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