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Phase transition of the one-dimensional coagulation-production process
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Recently an exact solution has been found by M. Henkel and H. Hinrichsen@J. Phys. A34, 1561~2001!# for
the one-dimensional coagulation-production process: 2A→A, AO”A→3A with equal diffusion and coagula-
tion rates. This model evolves into the inactive phase independently of the production rate witht21/2 density
decay law. This paper shows that cluster mean-field approximations and Monte Carlo simulations predict a
continuous phase transition for higher diffusion/coagulation rates as considered by the exact solution. Numeri-
cal evidence is given that the phase transition universality agrees with that of the annihilation-fission model
with low diffusions.
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One-dimensional, nonequilibrium phase transitions h
been found to belong to a few universality classes, the m
robust of them is the directed percolation~DP! class@1,2#.
According to the hypothesis of Refs.@3,4# all continuous
phase transitions to a single absorbing state in homogen
systems with short ranged interactions belong to this c
provided there is no additional symmetry and quenched
domness present.

Recent studies on the annihilation fission~AF! process
2A→O” , 2A→3A @5–8# found evidence that there is
phase transition in this model that does not belong to
known universality classes. This model without t
diffusion—the so called pair contact process where pairs
particles can annihilate or create new pairs—was introdu
originally by Jensen@9# and while the static exponents we
found to belong to DP class the spreading ones show n
universal behavior. By adding single particle diffusion@6#
Carlonet al. introduced the pair contact process with diff
sion ~PCPD! particle model. The renormalization grou
analysis of the corresponding bosonic field theory was gi
by Ref. @5#. This study predicted a non-DP class transitio
but it could not tell to which universality class this transitio
really belongs. An explanation based on symmetry ar
ments is still missing but numerical simulations sugg
@10,8# that the behavior of this system can be well describ
~at least for strong diffusion! by coupled subsystems: sing
particles performing annihilating random walk coupled
pairs ~B! following DP process:B→2B, B→O” . The sys-
tem has two nonsymmetric absorbing states: one is c
pletely empty, in the other a single particle walks random
Owing to this fluctuating absorbing state this model does
oppose the conditions of the DP hypothesis.

The most well known exception from the robust DP cla
is the parity conserving~PC! class, where a mod 2 conserv
tion of particles can be found@11# and in multiabsorbing
state systems an exactZ2 symmetry is satisfied too@12#.
Some exponents of the PCPD model are close to those o
PC class but the order parameter exponentb has been found
to be very far away from both of the DP and PC class val
@8#. In fact this system does not exhibit either aZ2 symmetry
or a parity conservation that appear in models with PC c
transition. It is conjectured@13# that this kind of phase tran
sition appears in models where~i! solitary particles diffuse,
~ii ! particle creation requires two particles, and~iii ! particle
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removal requires at least two particles to meet. In this pa
the following one-dimensional coagulation-production pr
cesses will be investigated.

~a! Spatially symmetric coagulation-production process

AO”A→
f

3A, ~1!

2A→
c/2

AO” , 2A→
c/2

O”A, ~2!

AO”↔
d

O”A. ~3!

~b! Spatially asymmetric coagulation-production pr
cesses:

AAO”→
f /2

3A, O”AA→
f /2

3A, ~4!

2A→
c/2

AO” , 2A→
c/2

O”A, ~5!

AO”↔
d

O”A. ~6!

Both versions fulfill conditions~i!–~iii. ! but Henkel and Hin-
richsen@13# show that ford5c the symmetric version al-
ways evolve into the inactive state withr}t20.5 scaling law.
They argue that the asymmetric version displays a none
librium phase transition. The difference is said to be simi
to the hard-core effects observed in one-dimensional mo
@14–18#.

Hard-core particle exclusion effects can really chan
both the dynamic@14–16# and static@17,18# behavior of one-
dimensional systems by introducing blockades in the part
dynamics but in this work I argue that this kind of hard-co
effects are not responsible for the lack of phase transit
One can quickly check by simulations that ford<c the den-
sity in the asymmetric version decays in much the sa
way—with r}t20.5 scaling law—as in case of the symmetr
version. Furthermore I shall show that if the coagulation r
is smaller than the diffusion rate particles can escape be
removal, an active phase will emerge with a continuo
phase transition belonging to the same class that was fo
©2001 The American Physical Society04-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 067104
in the AF model for weak diffusion. Therefore both versio
exhibit qualitatively the same phase diagram.

To prove this first I shall apply cluster mean-field a
proximations~GMF! @19,20#, which can predict phase dia
grams qualitatively well. The mean-field equation for t
steady state of both versions is

05 f ~12pA!pA
22cpA

2 , ~7!

wherepA is the probability ofA-s at a given site. Note tha
the diffusion rated does not play a role in this approx
mation. By introducing the parametrizationc5p(12d),
f 5(12p)(12d)—that is similar to that of the PCPD
model—this has the solution,

r5pA5
2p21

p21
, ~8!

for p,1/2 and r50 if p>1/2. Therefore an active stat
appears in the mean-field approximation already.

For higher order cluster mean-field approximations sim
lar scenario can be found, but one has to treat the two
sions separately. The density in pair approximation for
symmetric version is

~p21!p222dp~p212p22!1d2~p315p214p24!

~p21!p222dp~p212p22!1d2~p315p224!
.

~9!

One can easily prove that if the coagulation rate is equa
the diffusion rated5p(12d)/2 this gives a singler50 ab-
sorbing state solution in agreement with@13#.

The steady state solution with positive density is poss
if

d.
p22p

p213p22
. ~10!

FIG. 1. Phase diagram of the symmetric coagulation-produc
model. Dotted line: mean-field approximation, dashed line: pair
proximation, squares: simulation results. The circles showdc as the
function of c. Lines connecting symbols are used to guide e
only.
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This gives the phase boundary in pair approximation that
continuous unlike in case of the PCPD model@6# ~see Fig.
1!. There is an other solution with positive density f
d,p/(p12) but that is unstable. In the two extreme cas
d50 and d51 there is no phase transition. Ford50 the
system evolves to frozen states with isolated particles, w
for d51 there is only random walk of particles with exclu
sion. The pair density in the pair approximation

c5
~~p21!p2d~p213p22!!2~p21!21

~p21!p222dp~p212p22!1d2~p315p224!
~11!

has a leading order singularity all along the phase transi
line

c}~pc2p!2, ~12!

n
-

s

FIG. 2. Cluster mean-field approximations in the symmet
coagulation-production model ford50.2. The curves correspond t
steady state density solutions as the function ofp, for
N52,3,4,5,6,7~right to left!. The circles with error bars represen
simulation results. Inset: Corresponding coherent anomaly am
tudes with a power-law fitting.

FIG. 3. Local slopes of the density decay in the symmetric
agulation production process. Different curves correspond
p50.1795, 0.1797, 0.1798, 0.1799, 0.18~from bottom to top!.
Throughout the whole papert is measured in units of Monte Carl
sweeps~MCS!.
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BRIEF REPORTS PHYSICAL REVIEW E 63 067104
suggesting one universality class unlike in the case of PC
model @6#.

The GMF solutions forN53,4,5,6,7 block sizes hav
been determined numerically atd50.2. The approximation
level is constrained by the numerical stability of the fix
point solution in the multidimensional space ofN-block
probability variables. As Fig. 2 shows therN density curves
of different approximations converge to the simulation
sults.

Using these data an estimate can be given for the o
parameter density exponentr}up2pcub using the Coheren
anomaly method~CAM! @21#, which has been proven to giv
precise estimates for the DP@22# and PC@23# classes. Ac-
cording to CAM the amplitudesa(N) of the cluster mean-
field singularities scale in such a way that

a~N!}upc~N!2pcub2bMF ~13!

the exponent of true singular behavior can be estima
From the mean-field solution~8! one read off thatbMF51.
The critical pointpc can be estimated either by extrapolati
on the GMF results or by simulations. Linear extrapolation
d50.2 for pc(1/N→0) gives: pc50.182(2). Monte Carlo
simulations on large systems—discussed below—give
more precise estimate:pc50.179 75(8). The amplitudes
a(N) near pc(N) are determined by linear fitting from th
rN(p) data and shown in the inset of Fig. 2 as the function
pc(N)2pc . A power law with exponent b2bMF
520.43(3) can be fairly well applied for points correspon
ing to N.2 approximations giving an estimate:b
50.57(3), which agrees well with former results for the A
model with small diffusion rates@8#.

Monte Carlo simulations of the symmetric process star
from fully occupied lattices of sizeL540 000 show a phas
transition ford50.2 andpc50.179 75(10)~see Fig. 3!. The
local slopes of the density decay,

ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
, ~14!

~where we usem58 usually! at the critical point go to ex-
ponenta by a straight line, while in sub~super!-critical cases
they veer down~up! respectively.

For the critical point@pc50.179 75(8)# one can estimate
that the effective exponent tends toa50.263(9), seeTable
I, which agrees with results for the AF model@7,8# again.
For otherd-s similar results have been found.

In the supercritical region the steady states have been
termined for differente5p2pc values. Following level-off

TABLE I. Summary of results.

d 0.1 0.2 0.4 0.7

pc 0.1129~1! 0.17975~8! 0.2647~1! 0.3528~2!

a 0.263~9! 0.268~8! 0.275~8!

b 0.57~1! 0.58~1! 0.57~1!

bCAM 0.57~3!
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the densities were averaged over 104 MCS and 1000
samples. By looking at the effective exponent defined as

be f f~e i !5
ln r~e i !2 ln r~e i 21!

ln e i2 ln e i 21
, ~15!

one can read off:be f f→b.0.57(1), seeFig. 4 which is in
good agreement with the exponent of the AF model for we
diffusion determined by coherent anomaly method and sim
lations @8#.

The simulations and the cluster mean-field approxim
tions show that if the diffusion rate is lowered this pha
transition disappears and the system will decay with ther
}t20.5 law independently off in both versions. As expected
the asymmetric version exhibits a phase transition with
same universal properties as the symmetric version. For
ample, for d50.2 the transition point is at c
50.359(1), f /250.4409(1) with the decay exponenta
50.27(1).

In conclusion coagulation-production models exhibit
phase transition if the diffusion is fast enough. The spa
symmetry of the production process has been found to
irrelevant as in case of the AF process@8#. The critical be-
havior agrees well with that of the AF model in its wea
diffusion rate region. An open question is that why can n
one see the cyclically coupled behavior in this model sim
larly as in the PCPD model asd→1. The corrections to
scaling are getting very strong in this limit that make nume
cal solutions very confusing, but one has to realize that
B→O” process of pairs~present in AF! is missing in this
model. Therefore asingle universality class in this mode
and two distinct classesin the AF model are likely. This
conjecture is strengthened by the pair mean-field results:
obtains analytically thesamesingular behavior here andtwo
distinct singular behaviorsin case of the PCPD model alon
the phase transition line.

The author would like to thank No´ra Menyhárd for stimu-
lating discussions and Malte Henkel and Haye Hinrichs
for their comments. Support from Hungarian research fu
OTKA ~Grant Nos. T-25286 and T-23552! and from Bolyai
~Grant No. BO/00142/99! is acknowledged.

FIG. 4. Effective order parameter exponent results. Linear
trapolation results inb50.57(1).
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@18# G. Ódor, Phys. Rev. E63, 021113~2001!; 63, 056108~2001!.
@19# H. A. Gutowitz, J. D. Victor, and B. W. Knight, Physica D28,

18 ~1987!.
@20# R. Dickman, Phys. Rev. A38, 2588~1988!.
@21# M. Suzuki, J. Phys. Soc. Jpn.55, 4205~1986!.
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